Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 21(9): 1137-1156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534003

RESUMO

N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA), mixed with the solvent N,N-dimethylformamide (DMF), is used as a derivatizing reagent by the Sample Analysis at Mars (SAM) experiment onboard NASA's Curiosity rover and will soon be utilized by the Mars Organic Molecule Analyzer experiment onboard the ESA/Roscosmos Rosalind Franklin rover. The pyrolysis products of MTBSTFA, DMF, and the MTBSTFA/DMF mixtures, obtained at different temperatures, were analyzed. Two different pyrolysis modes were studied, flash pyrolysis and ramp pyrolysis (35°C/min), to evaluate the potential influence of the sample heating speed on the production of products in space chromatographs. The effect of the presence of calcium perchlorate on the pyrolysis products of MTBSTFA/DMF was also studied to ascertain the potential effect of perchlorate species known to be present at the martian surface. The results show that MTBSTFA/DMF derivatization should be applied below 300°C when using flash pyrolysis, as numerous products of MTBSTFA/DMF were formed at high pyrolysis temperatures. However, when an SAM-like ramp pyrolysis was applied, the final pyrolysis temperature did not appear to influence the degradation products of MTBSTFA/DMF. All products of MTBSTFA/DMF pyrolysis are listed in this article, providing a major database of products for the analysis of martian analog samples, meteorites, and the in situ analysis of martian rocks and soils. In addition, the presence of calcium perchlorate does not show any obvious effects on the pyrolysis of MTBSTFA/DMF: Only chloromethane and TBDMS-Cl (chloro-tertbutyldimethylsilane) were detected, whereas chlorobenzene and other chlorine-bearing compounds were not detected. However, other chlorine-bearing compounds were detected after pyrolysis of the Murchison meteorite in the presence of calcium perchlorate. This result reinforces previous suggestions that chloride-bearing compounds could be reaction products of martian samples and perchlorate.


Assuntos
Meio Ambiente Extraterreno , Marte , Cálcio , Dimetilformamida , Cromatografia Gasosa-Espectrometria de Massas , Percloratos
2.
Astrobiology ; 21(3): 279-297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33306917

RESUMO

The Mars Organic Molecule Analyzer (MOMA) and Sample Analysis at Mars (SAM) instruments onboard the Exomars 2022 and Mars Science Laboratory rovers, respectively, are capable of organic matter detection and differentiating potentially biogenic from abiotic organics in martian samples. To identify organics, both these instruments utilize pyrolysis-gas chromatography coupled to mass spectrometry, and the thermochemolysis agent tetramethylammonium hydroxide (TMAH) is also used to increase organic volatility. However, the reactivity and efficiency of TMAH thermochemolysis are affected by the presence of calcium perchlorate on the martian surface. In this study, we determined the products of TMAH pyrolysis in the presence and absence of calcium perchlorate at different heating rates (flash pyrolysis and SAM-like ramp pyrolysis with a 35°C·min-1 heating rate). The decomposition mechanism of TMAH pyrolysis in the presence of calcium perchlorate was studied by using stepped pyrolysis. Moreover, the effect of calcium perchlorate (at Mars-relevant concentrations) on the recovery rate of fatty acids with TMAH thermochemolysis was studied. Results demonstrate that flash pyrolysis yields more diversity and greater abundances of TMAH thermochemolysis products than does the SAM-like ramp pyrolysis method. There is no obvious effect of calcium perchlorate on TMAH degradation when the [ClO4-] is lower than 10 weight percent (wt %). Most importantly, the presence of calcium perchlorate does not significantly impact the recovery rate of fatty acids with TMAH thermochemolysis under laboratory conditions, which is promising for the detection of fatty acids via TMAH thermochemolysis with the SAM and MOMA instruments on Mars.


Assuntos
Marte , Percloratos , Cálcio , Meio Ambiente Extraterreno , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Amônio Quaternário
3.
Astrobiology ; 20(2): 292-306, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880468

RESUMO

Chromatographic analysis of the Cumberland mudstone in Gale crater by the Sample Analysis at Mars (SAM) instrument revealed the detection of two to three isomers of dichlorobenzene. Their individual concentrations were estimated to be in the 0.5-17 ppbw range relative to the sample mass. We also report the first detection of trichloromethylpropane and the confirmation of the detection of chlorobenzene previously reported. Supporting laboratory experiments excluded the SAM internal background as the source of those compounds, thus confirming the organic carbon and chlorine of the newly detected chlorohydrocarbons are indigenous to the mudstone sample. Laboratory experiments also demonstrated that the chlorohydrocarbons were mainly produced from chemical reactions occurring in the SAM ovens between organic molecules and oxychlorines contained in the sample. The results we obtained show that meteoritic organics and tested chemical species (a polycyclic aromatic hydrocarbon, an amino acid, and a carboxylic acid) were plausible organic precursors of the chlorinated aromatic molecules detected with SAM, thus suggesting that they could be among the organic molecules present in the mudstone. Results from this study coupled with previously reported detections of chlorinated aromatics (<300 ppbw) indigenous to the same mudstone highlight that organics can be preserved from the harsh surface conditions even at shallow depth. The detection of new chlorohydrocarbons with SAM confirms that organic molecules should have been available in an environment favorable to life forms, strengthening the habitability aspect of Gale crater.


Assuntos
Clorobenzenos/análise , Exobiologia/métodos , Sedimentos Geológicos/química , Marte , Propano/análise , Clorobenzenos/química , Cromatografia Gasosa-Espectrometria de Massas , Propano/química , Astronave , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...